Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets.
نویسندگان
چکیده
We report an investigation of ordering transitions that are induced in water-dispersed, micrometer-sized droplets of a thermotropic liquid crystal (LC) by the bacterial lipopolysaccharide endotoxin. We reveal that the ordering transitions induced by endotoxin - from a bipolar state of the droplets to a radial state - are strongly dependent on the size of the LC droplets. Specifically, as the diameters of the LC droplets increase from 2 μm to above 10 μm (in phosphate buffered saline with an ionic strength of 90 mM and a pH of 7.2), we measured the percentage of droplets exhibiting a radial configuration in the presence of 100 pg/mL endotoxin to decrease from 98 ± 1 % to 3 ± 2 %. In addition, we measured a decrease in either the ionic strength or pH of the aqueous phase to reduce the percentage of droplets exhibiting a radial configuration in the presence of endotoxin. These results, when interpreted within the context of a simple thermodynamic model that incorporates the contributions of elasticity and surface anchoring to the free energies of the LC droplets, lead us to conclude that (i) the elastic constant K24 plays a central role in determining the size-dependent response of the LC droplets to endotoxin, and (ii) endotoxin-triggered ordering transitions occur only under solution conditions (pH, ionic strength) where the combined contributions of elasticity and surface anchoring to the free energies of the bipolar and radial configurations of the LC droplets are similar in magnitude. Our analysis also suggests that the presence of endotoxin perturbs the free energies of the LC droplets by ~10-17 J/droplet, which is comparable to the standard free energy of self-association of ~103 endotoxin molecules. These results, when combined with prior reports of localization of endotoxin at the center of LC droplets, are consistent with the hypothesis that self-assembly of endotoxin within micrometer-sized LC droplets provides the driving force for the ordering transitions. Overall, these results advance our understanding of ordering transitions triggered by the interactions of analytes with LC droplets and, more broadly, provide guidance to the design of LC droplet systems as the basis of stimuli-responsive soft materials.
منابع مشابه
Endotoxin-induced structural transformations in liquid crystalline droplets.
The ordering of liquid crystals (LCs) is known to be influenced by surfaces and contaminants. Here, we report that picogram per milliliter concentrations of endotoxin in water trigger ordering transitions in micrometer-size LC droplets. The ordering transitions, which occur at surface concentrations of endotoxin that are less than 10(-5) Langmuir, are not due to adsorbate-induced changes in the...
متن کاملInfluence of Casein and Inulin on the Properties of Fish Oil Nano-emulsion
The purpose of this study is to produce an oil-in-water nano-emulsion by ultrasonication. Casein combined with inulin used as continuous phase, while dispersed phase consisted of fish oil. The size of the nano-emulsion and the pH of nano-emulsion were characterized. Ultrasound has been used for preparing emulsion by 24 KHz intensity for 120 seconds. Prepared nano-emulsion was investigated by pa...
متن کاملInfluence of Casein and Inulin on the Properties of Fish Oil Nano-emulsion
The purpose of this study is to produce an oil-in-water nano-emulsion by ultrasonication. Casein combined with inulin used as continuous phase, while dispersed phase consisted of fish oil. The size of the nano-emulsion and the pH of nano-emulsion were characterized. Ultrasound has been used for preparing emulsion by 24 KHz intensity for 120 seconds. Prepared nano-emulsion was investigated by pa...
متن کاملCrystallization in Emulsions: A Thermo-Optical Method to Determine Single Crystallization Events in Droplet Clusters
Delivery systems with a solid dispersed phase can be produced in a melt emulsification process. For this, dispersed particles are melted, disrupted, and crystallized in a liquid continuous phase (melt emulsification). Different to bulk crystallization, droplets in oil-in-water emulsions show individual crystallization behavior, which differs from droplet to droplet. Therefore, emulsion droplets...
متن کاملOrientational multiplicity and transitions in liquid crystalline droplets.
Orientation distributions in droplets of liquid crystals with homeotropic anchoring are computed with a simulated annealing algorithm that minimizes the free energy of the Oseen-Frank continuum theory. The droplets exhibit multiple orientational steady states that are separated by finite energy barriers over the entire range of the dimensionless ratio of surface to elastic forces, with maximum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 9 2 شماره
صفحات -
تاریخ انتشار 2013